Задание 10 ЕГЭ по математике. Теория вероятностей. Повышенный уровень сложности
В 2022 году в варианты ЕГЭ по математике добавились новые задачи по теории вероятностей. По сравнению с теми, которые раньше были в варианте, это повышенный уровень сложности.
Мы разберем задачу №10 из Демоверсии ЕГЭ-2022, задания из Методических рекомендаций ФИПИ для учителей и аналогичные им.
1. Демо-версия ЕГЭ-2022
Симметричную игральную кость бросили 3 раза. Известно, что в сумме выпало
6 очков. Какова вероятность события «хотя бы раз выпало 3 очка»?
Решение:
Выпишем возможные исходы как тройки чисел так, чтобы в сумме получилось 6.
Всего 10 возможных исходов. Благоприятные исходы помечены красным цветом, их 6.
По определению вероятности получаем
2. Игральный кубик бросают дважды. Известно, что в сумме выпало 8 очков. Найдите вероятность того, что во второй раз выпало 3 очка.
Решение:
Выпишем возможные варианты получения 8 очков в сумме:
Подходит только вариант 5; 3. Вероятность этого события равна 1 : 5 = 0,2 (один случай из 5 возможных).
Ответ: 0,2
3. В ящике 4 красных и 2 синих фломастера. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер появится третьим по счету?
Решение:
Благоприятными будут следующие исходы:
Первый раз – вытащили красный фломастер,
И второй раз – красный,
А третий раз – синий.
Вероятность вытащить красный фломастер (которых в ящике 4) равна
После этого в ящике остается 5 фломастеров, из них 3 красных, вероятность вытащить красный равна
Наконец, когда осталось 4 фломастера и из них 2 синих, вероятность вытащить синий равна
Вероятность события {красный – красный – синий } равна произведению этих вероятностей, то есть
Ответ: 0,2
4. В коробке 10 синих, 9 красных и 6 зеленых фломастеров. Случайным образом выбирают 2 фломастера. Какова вероятность того, что окажутся выбраны один синий и один красный фломастер?
Решение:
Всего в коробке 25 фломастеров.
В условии не сказано, какой из фломастеров вытащили первым – красный или синий.
Предположим, что первым вытащили красный фломастер. Вероятность этого в коробке остается 24 фломастера, и вероятность вытащить вторым синий равна Вероятность того, что первым вытащили красный, а вторым синий, равна
А если первым вытащили синий фломастер? Вероятность этого события равна Вероятность после этого вытащить красный равна вероятность того, что синий и красный вытащили один за другим, равна
Значит, вероятность вытащить первым красный, вторым синий или первым синий, вторым красный равна
А если их доставали из коробки не один за другим, а одновременно? Вероятность остается такой же: 0,3. Потому что она не зависит от того, вытащили мы фломастеры один за другим, или с интервалом в 2 секунды, или с интервалом в 0,5 секунды… или одновременно!
Ответ: 0,3.
5. При подозрение на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 86 % случаев. Если заболевания нет, то тест выявляет отсутствие заболевания в среднем в 94% случаев.
Известно, что в среднем тест оказывается положительным у 10% пациентов, направленных на тестирование. При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание?
Решение:
Уточним условие: «Какова вероятность того, что пациент, ПЦР-тест которого положителен, действительно имеет это заболевание?». В такой формулировке множество возможных исходов — это число пациентов с положительным результатом ПЦР-теста, причем только часть из них действительно заболевшие.
Пациент приходит к врачу и делает ПЦР-тест. Он может быть болен этим заболеванием – с вероятностью х. Тогда с вероятностью 1 – х он этим заболеванием не болен.
Анализ пациента может быть положительным по двум причинам:
а) пациент болеет заболеванием, которое нельзя называть, его анализ верен; событие А,
б) пациент не болен этим заболеванием, его анализ ложно-положительный, событие В.
Это несовместные события, и вероятность их суммы равна сумме вероятностей этих событий.
Имеем:
Мы составили уравнение, решив которое, найдем вероятность x.
Что такое вероятность х? Это вероятность того, что пациент, пришедший к доктору, действительно болен. Здесь множество возможных исходов — это количество всех пациентов, пришедших к доктору.
Нам же нужно найти вероятность z того, что пациент, ПЦР-тест которого положителен, действительно имеет это заболевание. Вероятность этого события равна (пациент болен и ПЦР-тест выявил заболевание, произведение событий). С другой стороны, эта вероятность равна (у пациента положительный результат ПЦР-теста, и при выполнении этого условия он действительно болен).
Получим: отсюда
Ответ: 0,43
Вероятность того, что пациент с положительным результатом ПЦР-теста действительно болен, меньше половины!
Кстати, это реальная проблема для диагностики в медицине, то есть в задаче отражена вполне жизненная ситуация.
6. Телефон передает sms-сообщение. В случае неудачи телефон делает следующую попытку. Вероятность того, что сообщение удастся передать без ошибок в каждой следующей попытке, равна 0,4. Найдите вероятность того, что для передачи сообщения потребуется не больше 2 попыток.
Решение:
Здесь все просто. Либо сообщение удалось передать с первой попытки, либо со второй.
Вероятность того, что сообщение удалось передать с первой попытки, равна 0,4.
С вероятностью 0,6 с первой попытки передать не получилось. Если при этом получилось со второй, то вероятность этого события равна
Значит, вероятность того, что для передачи сообщения потребовалось не более 2 попыток, равна
Ответ: 0,64
7. Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?
Решение:
А это более сложная задача. Можно, как и в предыдущих, пользоваться определением вероятности и понятиями суммы и произведения событий. А можно применить формулу Бернулли.
Формула Бернулли:
– Вероятность того, что в n независимых испытаниях некоторое случайное событие A наступит ровно m раз, равна:
где
p – вероятность появления события A в каждом испытании;
– вероятность появления события A в каждом испытании
Коэффициент часто называют биномиальным коэффициентом.
Нет, это не заклинание. Не нужно громко кричать: Эн!!!! Поделить на эм! И на эн минус эм! То, что вы видите в формуле, – это не восклицательные знаки. Это факториалы. На самом деле все просто: n! (читается: эн факториал) – это произведение натуральных чисел от 1 до n. Например,
Пусть вероятность выпадения орла при одном броске монеты равна вероятность решки тоже Давайте посчитаем вероятность того, что из 10 бросков монеты выпадет ровно 5 орлов.
Вероятность выпадения ровно 4 орлов равна
Найдем, во сколько раз больше, чем
Ответ: 1,2
8. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень дается не более двух выстрелов, и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6. Во сколько раз вероятность события «стрелок поразит ровно 5 мишеней» больше вероятности события «стрелок поразит ровно 4 мишени»?
Решение:
Стрелок поражает мишень с первого или со второго выстрела;
Вероятность поразить мишень равна
Вероятность поразить 5 мишеней из 5 равна
Вероятность поразить 4 мишени из 5 находим по формуле Бернулли:
9. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень дается не более двух выстрелов, и известно, что вероятность поразить мишень каждым выстрелом равна 0,5. Во сколько раз вероятность события «стрелок поразит ровно 3 мишени» больше вероятности события «стрелок поразит ровно 2 мишени»?
Решение:
Найдем вероятность поразить одну мишень – с первого или со второго выстрела.
С вероятностью стрелок поражает мишень первым выстрелом (и больше по ней не стреляет).
Найдем вероятность того, что стрелок поразит мишень вторым выстрелом. Она равна так как с вероятностью он промахнулся в первый раз и с вероятностью второй выстрел был удачным.
Значит, вероятность поразить одну мишень первым или вторым выстрелом равна
Теперь нам на помощь придет формула Бернулли.
Найдем вероятность того, что стрелок поразит ровно 3 мишени из 5.
Вероятность поразить ровно 2 мишени из пяти
Заметим, что
Получим:
Ответ: 3.
10. Стрелок в тире стреляет по мишени. Известно, что он попадает в цель с вероятностью 0,3 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать этому стрелку, чтобы вероятность поражения цели была не менее 0,6?
Решение:
Похожие задачи были в Банке заданий ФИПИ и раньше. Пусть у стрелка есть n патронов. Стрелок может поразить цель первым, вторым … n-ным выстрелом, и все эти исходы для нас благоприятны. Не подходит только один исход – когда стрелок n раз стрелял и каждый раз был промах.
Вероятность промаха при одном выстреле равна 1 – 0,3 = 0,7.
Вероятность n промахов (из n выстрелов) равна а вероятность попасть с первого раза или сто второго … или с n-ого выстрела равна
По условию,
Если то – не подходит;
Для условие выполнено,
Хватит 3 патронов.
Ответ: 3.
11. Игральную кость бросают до тех пор, пока сумма всех выпавших очков не превысит число 3. Какова вероятность того, что для этого потребуется ровно 3 броска? Ответ округлите до сотых.
Решение:
Кажется, что задача сложная (на самом деле нет).
Давайте подумаем: как получилось, что ровно за 3 броска игральной кости сумма выпавших очков оказалась больше трех? Из этого следует, что за 2 броска сумма выпавших очков была меньше 3 или равна 3.
Если за 2 броска сумма выпавших очков была меньше 3, значит, она была равна 2, то есть первый раз выпала единица и второй раз тоже единица. Вероятность этого события равна
Сколько же очков в этом случае должен дать третий бросок? Очевидно, что подойдет 2, 3, 4, 5, 6 – все, кроме 1. Вероятность того, что при третьем броске выпадет число очков, не равное единице, равна
Значит, вероятность того, что при первых двух бросках выпали единицы, а при третьем – не единица, равна
Нам подойдет также случай, когда сумма очков за первые 2 броска равна 3. Это значит, что выпали 2 и 1 или 1 и 2, то есть 2 благоприятных исхода из 36 возможных. Вероятность этого события равна
При этом нам все равно, что выпадет при третьем броске: очевидно, что сумма очков при трех бросках будет больше трех.
Окончательно получаем:
Ответ: 0,08
Вот еще одна задача из Демо-версии ЕГЭ-2022:
12. В городе 48% взрослого населения – мужчины. Пенсионеры составляют 12,6% взрослого населения, причём доля пенсионеров среди женщин равна 15%. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».
Решение:
Пусть N – численность взрослого населения в городе (мужчин и женщин).
Количество взрослых мужчин в городе: 0,48N
Количество женщин в городе: 0,52N
Из них 0,15 * 0,52N = 0,078N женщин-пенсионеров,
Всего пенсионеров 0,126N,
Тогда количество мужчин-пенсионеров равно 0,126N – 0,078N = 0,048N.
Вероятность для случайно выбранного мужчины оказаться пенсионером равна отношению числа мужчин-пенсионеров к числу мужчин в городе, то есть 0,048 N : 0,48N = 0,1.
Ответ. 0,1.